158 research outputs found

    Learned Quality Enhancement via Multi-Frame Priors for HEVC Compliant Low-Delay Applications

    Full text link
    Networked video applications, e.g., video conferencing, often suffer from poor visual quality due to unexpected network fluctuation and limited bandwidth. In this paper, we have developed a Quality Enhancement Network (QENet) to reduce the video compression artifacts, leveraging the spatial and temporal priors generated by respective multi-scale convolutions spatially and warped temporal predictions in a recurrent fashion temporally. We have integrated this QENet as a standard-alone post-processing subsystem to the High Efficiency Video Coding (HEVC) compliant decoder. Experimental results show that our QENet demonstrates the state-of-the-art performance against default in-loop filters in HEVC and other deep learning based methods with noticeable objective gains in Peak-Signal-to-Noise Ratio (PSNR) and subjective gains visually

    Low-Light Image and Video Enhancement: A Comprehensive Survey and Beyond

    Full text link
    This paper presents a comprehensive survey of low-light image and video enhancement. We begin with the challenging mixed over-/under-exposed images, which are under-performed by existing methods. To this end, we propose two variants of the SICE dataset named SICE_Grad and SICE_Mix. Next, we introduce Night Wenzhou, a large-scale, high-resolution video dataset, to address the issue of the lack of a low-light video dataset that discount the use of low-light image enhancement (LLIE) to videos. Our Night Wenzhou dataset is challenging since it consists of fast-moving aerial scenes and streetscapes with varying illuminations and degradation. We conduct extensive key technique analysis and experimental comparisons for representative LLIE approaches using these newly proposed datasets and the current benchmark datasets. Finally, we address unresolved issues and propose future research topics for the LLIE community. Our datasets are available at https://github.com/ShenZheng2000/LLIE_Survey.Comment: 13 pages, 8 tables, and 13 figure

    H2-Stereo: High-Speed, High-Resolution Stereoscopic Video System

    Full text link
    High-speed, high-resolution stereoscopic (H2-Stereo) video allows us to perceive dynamic 3D content at fine granularity. The acquisition of H2-Stereo video, however, remains challenging with commodity cameras. Existing spatial super-resolution or temporal frame interpolation methods provide compromised solutions that lack temporal or spatial details, respectively. To alleviate this problem, we propose a dual camera system, in which one camera captures high-spatial-resolution low-frame-rate (HSR-LFR) videos with rich spatial details, and the other captures low-spatial-resolution high-frame-rate (LSR-HFR) videos with smooth temporal details. We then devise a Learned Information Fusion network (LIFnet) that exploits the cross-camera redundancies to enhance both camera views to high spatiotemporal resolution (HSTR) for reconstructing the H2-Stereo video effectively. We utilize a disparity network to transfer spatiotemporal information across views even in large disparity scenes, based on which, we propose disparity-guided flow-based warping for LSR-HFR view and complementary warping for HSR-LFR view. A multi-scale fusion method in feature domain is proposed to minimize occlusion-induced warping ghosts and holes in HSR-LFR view. The LIFnet is trained in an end-to-end manner using our collected high-quality Stereo Video dataset from YouTube. Extensive experiments demonstrate that our model outperforms existing state-of-the-art methods for both views on synthetic data and camera-captured real data with large disparity. Ablation studies explore various aspects, including spatiotemporal resolution, camera baseline, camera desynchronization, long/short exposures and applications, of our system to fully understand its capability for potential applications

    Point Cloud Distortion Quantification based on Potential Energy for Human and Machine Perception

    Full text link
    Distortion quantification of point clouds plays a stealth, yet vital role in a wide range of human and machine perception tasks. For human perception tasks, a distortion quantification can substitute subjective experiments to guide 3D visualization; while for machine perception tasks, a distortion quantification can work as a loss function to guide the training of deep neural networks for unsupervised learning tasks. To handle a variety of demands in many applications, a distortion quantification needs to be distortion discriminable, differentiable, and have a low computational complexity. Currently, however, there is a lack of a general distortion quantification that can satisfy all three conditions. To fill this gap, this work proposes multiscale potential energy discrepancy (MPED), a distortion quantification to measure point cloud geometry and color difference. By evaluating at various neighborhood sizes, the proposed MPED achieves global-local tradeoffs, capturing distortion in a multiscale fashion. Extensive experimental studies validate MPED's superiority for both human and machine perception tasks

    Analysis of influencing factors and prediction of China’s Containerized Freight Index

    Get PDF
    China, as a major maritime nation, the China Containerized Freight Index (CCFI) serves as an objective reflection of the Chinese shipping market and an important indicator for understanding China’s shipping industry globally. The shipping market is a complex ecosystem influenced by various factors, including vessel supply and demand, cargo supply and demand relationships and prices, fuel prices, and competition from substitute and complementary markets. To analyze and study the state of the Chinese shipping market, we selected the CCFI as an indicator and collected data on six factors that may affect the overall shipping market. These factors include “ the China Coastal Bulk Freight Index(CCBFI)”, “the Baltic Dry Index(BDI)”, “the Yangtze River Container Freight Index”, “Global: Aluminum (minimum purity of 99.5%, London Metal Exchange (LME) spot price): UK landed price”, “Major Ports: Container Throughput”, and “Coal Price: US Central Appalachia: Coal Spot Price Index”. Then, we constructed an analyticaland predictive framework using Deep Neural Network (DNN), CatBoost regression model, and robust regression model to study the CCFI. Based on the R2 results of the three models, it is evident that DNN provides the best analytical and predictive performance for the CCFI, accurately forecasting its changes. Additionally, the robust regression model indicates that “Global: Aluminum (minimum purity of 99.5%, LME spot price): UK landed price” has the greatest impact on the CCFI. Finally, from a business perspective, we provide some suggestions for China’s container shipping industry

    Review on Photovoltaic Agriculture Application and Its Potential on Grape Farms in Xinjiang, China

    Get PDF
    Photovoltaic industry has become extremely important in China as a strategic emerging policy since 2012, and how to widen the domestic demand to overcome the problem of overcapacity has drawn much attention. The so-called "Agrivoltaic", or, photovoltaic agriculture, could provide a possibly superior approach to providing green and sustainable electricity simultaneously. Xinjiang province, located in Northwestern China, is abundant in renewable energy resources such as wind power and solar radiation; on the other hand, Xinjiang is famous for its growth of grapes with high-intensity of sweetness. Hence, in this paper we firstly introduce some new opportunities for photovoltaic agriculture applications in China, such as photovoltaic greenhouse, photovoltaic water pumping and photovoltaic water purification. Then we focus on one of the applications â€“ the Agrivoltaic potential on grape farms in Xinjiang, and investigate the potential co-develop between the grape production and the solar PV farms, so that the farmers could use the electricity generated from the PV station and simultaneously got the second income from selling the electricity to the grid, without noticeable influence on the crop production output. The results indicate a positive economic value from this hypothesis agrivoltaic system, with green electricity generation, village electrification and the maintenance of the approximately same production of grapes. However, more researches and empirical explorations should be implemented further to draw some unified standard on the agrivoltaic system, so that the output could be stabilized and more and more farmers would be convinced and join the program
    • …
    corecore